

#### **Lemington Riverside- Calculation Policy**

#### Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

| Concrete                                                                                            | Pictorial                                                                                                  | Abstract                                                                                                         |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars). | Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. | Four is a part, 3 is a part and the whole is seven.                                                              |
| Counting on using number lines using cubes or Numicon.                                              | A bar model which encourages the children to count on, rather than count all.                              | The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2 |



| Regrouping to make 10; using ten frames | and |
|-----------------------------------------|-----|
| counters/cubes or using Numicon.        |     |

6+5

| ø |   |   |   | • | • | 0 | 0 | • |   |
|---|---|---|---|---|---|---|---|---|---|
| Ŷ |   |   |   |   | [ | 8 | 8 | 8 |   |
| 8 | 8 | 0 | 8 | 8 | 6 | 9 |   |   | Į |
|   |   |   |   |   |   |   |   |   | I |



Children to draw the ten frame and counters/cubes.





Children to develop an understanding of equality e.g.

$$6 + \Box = 11$$

$$6 + 5 = 5 + \square$$

$$6 + 5 = \Box + 4$$

TO + O using base 10. Continue to develop understanding of partitioning and place value.

41+8



Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.



41+8



1+8=9 40 + 9 = 49



TO + TO using base 10. Continue to develop understanding of partitioning and place value.

36 + 25



Chidlren to represent the base 10 in a place value chart.



Looking for ways to make 10.



Formal method:





Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column- we exchange for 1 ten, when there are 10 tens in the 10s column- we exchange for 1 hundred.

| 100s       | 10s  | 1s  |
|------------|------|-----|
| 00         | 6000 | 000 |
| <b>•••</b> | 880  | 00  |
| 6          | 1    | 1   |

Chidren to represent the counters in a place value chart, circling when they make an exchange.



243

# Conceptual variation; different ways to ask children to solve 21 + 34



|    | ?  |
|----|----|
| 21 | 34 |

Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21 + 34 = 55. Prove it

21

+34

21 + 34 =

= 21 + 3

Calculate the sum of twenty-one and thirty-four.



Missing digit problems:

| ilissii ig olgit p | rooterns. |  |
|--------------------|-----------|--|
| 10s                | 1s        |  |
| 0 0                | 0         |  |
| 000                | ?         |  |
| ?                  | 5 -       |  |



## Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

| Concrete                                                                                                                                         | Pictorial                                                                                                                | Abstract                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).  4 - 3 = 1 | Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. | 4-3=<br>=4-3<br>4<br>3 ?                                                                                                                    |
| Counting back (using number lines or number tracks) children start with 6 and count back 2.  6 - 2 = 4  1 2 3 4 5 6 7 8 9 10                     | Children to represent what they see pictorially e.g.                                                                     | Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line |



Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5.



Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.



Find the difference between 8 and 5.

8 - 5, the difference is

Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.

Making 10 using ten frames.

14 - 5



Children to present the ten frame pictorially and discuss what they did to make 10.





Children to show how they can make 10 by partitioning the subtrahend.



$$14 - 4 = 10$$
  
 $10 - 1 = 9$ 

Column method using base 10.

48-7



Children to represent the base 10 pictorially.



Column method or children could count back 7.

|   | 4 | 8 |
|---|---|---|
| _ |   | 7 |
|   | 4 | 1 |





# Conceptual variation; different ways to ask children to solve 391 - 186



Raj spent £391, Timmy spent £186. How much more did Raj spend?

Calculate the difference between 391 and 186.







#### Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

| Concrete                                            | Pictorial                                                                       | Abstract                                                            |
|-----------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 | Children to represent the practical resources in a picture and use a bar model. | 3 × 4 = 12<br>4 + 4 + 4 = 12                                        |
| There are 3 equal groups, with 4 in each group.     | <ul><li>88 88</li><li>?</li></ul>                                               |                                                                     |
| Number lines to show repeated groups-<br>3 × 4      | Represent this pictorially alongside a number line e.g.:                        | Abstract number line showing three jumps of four. $3 \times 4 = 12$ |
| Cuisenaire rods can be used too.                    | 000010000100001                                                                 | 0 4 8 12                                                            |

#WeAreLemington

#WeAreCollaborative

#WeAre**Global** 

#WeAreAmbitious

#WeAreResilient



| Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2 | Children to represent the arrays pictorially.                                  | Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ $2 + 2 + 2 + 2 + 2 = 10$ $10 = 5 + 5$                           |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partition to multiply using Numicon, base 10 or Cuisenaire rods.  4 × 15                                                              | Children to represent the concrete manipulatives pictorially.                  | Children to be encouraged to show the steps they have taken.  4 × 15  10 5  10 × 4 = 40  5 × 4 = 20  40 + 20 = 60  A number line can also be used                             |
| Formal column method with place value counters (base 10 can also be used.) 3 × 23                                                     | Children to represent the counters pictorially.  10s   Is  00 000  00 000  6 9 | Children to record what it is they are doing to show understanding. $3 \times 23$ $3 \times 20 = 60$ $3 \times 3 = 9$ $3 \times 3 = 9$ $3 \times 3 = 60$ 23 $3 \times 3 = 69$ |







Children to represent the counters/base 10, pictorially e.g. the image below.



Formal written method

$$6 \times 23 =$$

23

1 1

Answer: 3224

When children start to multiply 3d × 3d and 4d × 2d etc., they should be confident with the abstract:

To get 744 children have solved  $6 \times 124$ .

To get 2480 they have solved 20 x 124.

### Conceptual variation; different ways to ask children to solve 6 × 23

23 23 23 23 23 23

-0

Mai had to swim 23 lengths, 6 times a week.

How many lengths did she swim in one week?

With the counters, prove that 6 x 23 = 138

Find the product of 6 and 23

6 × 23 =



6 23

What is the calculation? What is the product?

| 100s | 10s | 1s  |
|------|-----|-----|
|      | 000 | 000 |
|      | 00  | 000 |



#### Calculation policy: Division

Key language: share, group, divide, divided by, half.





2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.

13 + 4

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4.



There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.



There are 3 whole squares, with 1 left over.

13 + 4 - 3 remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.

'3 groups of 4, with 1 left over'



Sharing using place value counters.

42 + 3 = 14



Children to represent the place value counters pictorially.



Children to be able to make sense of the place value counters and write calculations to show the process.

$$42 + 3$$
  
 $42 = 30 + 12$   
 $30 + 3 = 10$   
 $12 + 3 = 4$   
 $10 + 4 = 14$ 



#### Short division using place value counters to group. 615 ÷ 5



- 1. Make 615 with place value counters.
- 2. How many groups of 5 hundreds can you make with 6 hundred counters?
- 3. Exchange 1 hundred for 10 tens.
- 4. How many groups of 5 tens can you make with 11 ten counters?
- 5. Exchange 1 ten for 10 ones.
- 6. How many groups of 5 ones can you make with 15 ones?

Represent the place value counters pictorially.



Children to the calculation using the short division scaffold.

#### Long division using place value counters

 $2544 \div 12$ 

| 1000s | 100s | 10s  | 1s   |   |
|-------|------|------|------|---|
| ••    | 0000 | 0000 | 0000 |   |
|       |      |      |      |   |
| 1000s | 100s | 10s  | 1s   |   |
|       | 0000 | 0000 | 0000 | 1 |
|       | 0000 |      |      | ı |
|       | 2000 |      |      |   |

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.



| 1000s | 100s | 10s                  | 1s   |
|-------|------|----------------------|------|
|       | 0000 | 0000<br>0000<br>0000 | 0000 |

After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens.

| 1000s | 100s | 10s  | 1s   |
|-------|------|------|------|
|       | 0000 | 0000 | 0000 |
|       | 0000 | 0000 | 8888 |
|       | 9000 |      | 8888 |

After exchanging the 2 tens, we have 24 ones. We can group 24 ones into 2 group of 12, which leaves no remainder.

12 2544

24

24

24

#### Conceptual variation; different ways to ask children to solve 615 ÷ 5

Using the part whole model below, how can you divide 615 by 5 without using short division?



I have £615 and share it equally between 5 bank accounts. How much will be in each account?

615 pupils need to be put into 5 groups. How many will be in each group?

5 615

615 ÷ 5 = 615 ÷ 5

What is the calculation? What is the answer?

